15.8 C
New York
Saturday, March 22, 2025

The pathways for nanoparticle transport throughout tumour endothelium


  • Hobbs, S. Ok. et al. Regulation of transport pathways in tumor vessels: Position of tumor sort and microenvironment. Proc. Natl Acad. Sci. USA 95, 4607–4612 (1998).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Peer, D. et al. Nanocarriers as an rising platform for most cancers remedy. Nat. Nanotechnol. 2, 751–760 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • He, H., Liu, L., Morin, E. E., Liu, M. & Schwendeman, A. Survey of medical translation of most cancers nanomedicines—classes realized from successes and failures. Acc. Chem. Res. 52, 2445–2461 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wilhelm, S. et al. Evaluation of nanoparticle supply to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sindhwani, S. et al. The entry of nanoparticles into strong tumours. Nat. Mater. 19, 566–575 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kingston, B. R. et al. Particular endothelial cells govern nanoparticle entry into strong tumors. ACS Nano 15, 14080–14094 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nguyen, L. N. M. et al. The exit of nanoparticles from strong tumours. Nat. Mater. 22, 1261–1272 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nguyen, L. N. M. et al. The mechanisms of nanoparticle supply to strong tumours. Nat. Rev. Bioeng. 2, 201–213 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313–326 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fung, Ok. Y. Y., Fairn, G. D. & Lee, W. L. Transcellular vesicular transport in epithelial and endothelial cells: challenges and alternatives. Site visitors 19, 5–18 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Oh, P. et al. In vivo proteomic imaging evaluation of caveolae reveals pumping system to penetrate strong tumors. Nat. Med. 20, 1062–1068 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Commisso, C. et al. Macropinocytosis of protein is an amino acid provide route in Ras-transformed cells. Nature 497, 633–637 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Basagiannis, D. et al. VEGF induces signalling and angiogenesis by directing VEGFR2 internalisation by macropinocytosis. J. Cell Sci. 129, 4091–4104 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pulaski, B. A. & Ostrand‐Rosenberg, S. Mouse 4T1 breast tumor mannequin. Curr. Protoc. Immunol. 39, 20.2.1–20.2.16 (2000).

    Article 

    Google Scholar
     

  • Parton, R. G. & Simons, Ok. The a number of faces of caveolae. Nat. Rev. Mol. Cell Biol. 8, 185–194 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kerr, M. C. & Teasdale, R. D. Defining macropinocytosis. Site visitors 10, 364–371 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Swanson, J. A. & Watts, C. Macropinocytosis. Tendencies Cell Biol. 5, 424–428 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kirchhausen, T., Macia, E. & Pelish, H. E. Use of dynasore, the small molecule inhibitor of dynamin, within the regulation of endocytosis. Strategies Enzymol. 438, 77–93 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Koivusalo, M. et al. Amiloride inhibits macropinocytosis by reducing submembranous pH and stopping Rac1 and Cdc42 signaling. J. Cell Biol. 188, 547–563 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhu, M. et al. Machine-learning-assisted single-vessel evaluation of nanoparticle permeability in tumour vasculatures. Nat. Nanotechnol. 18, 657–666 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang, L. et al. SR-B1 drives endothelial cell LDL transcytosis through DOCK4 to advertise atherosclerosis. Nature 569, 565–569 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Commisso, C., Flinn, R. J. & Bar-Sagi, D. Figuring out the macropinocytic index of cells by a quantitative image-based assay. Nat. Protoc. 9, 182–192 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key ideas and strategies for learning the endocytosis of organic and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Carmichael, S. W., Brooks, J. C., Malhotra, R. Ok., Wakade, T. D. & Wakade, A. R. Ultrastructural demonstration of exocytosis within the intact rat adrenal medulla. J. Electron Microsc. Tech. 12, 316–322 (1989).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hastoy, B., Clark, A., Rorsman, P. & Lang, J. Fusion pore in exocytosis: greater than an exit gate? A β-cell perspective. Cell Calcium 68, 45–61 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sykes, E. A. et al. Tailoring nanoparticle designs to focus on most cancers primarily based on tumor pathophysiology. Proc. Natl Acad. Sci. USA 113, E1142–E1151 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ahn, W., Singla, B., Marshall, B. & Csányi, G. Visualizing membrane ruffle formation utilizing scanning electron microscopy. J. Vis. Exp. https://doi.org/10.3791/62658 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lambies, G. & Commisso, C. Macropinocytosis, capabilities and mechanisms. Subcell. Biochem. 98, 15–40 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fullstone, G., Wooden, J., Holcombe, M. & Battaglia, G. Modelling the transport of nanoparticles beneath blood circulate utilizing an agent-based method. Sci. Rep. 5, 10649 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, J., Thomas, A. & Liu, Y. Affect of pink blood cells on nanoparticle focused supply in microcirculation. Mushy Matter 8, 1934–1946 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pernet-Gallay, Ok. et al. Vascular permeability within the RG2 glioma mannequin might be mediated by macropinocytosis and be unbiased of the opening of the tight junction. J. Cereb. Blood Move Metab. 37, 1264–1275 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eelen, G., Zeeuw, P. de, Simons, M. & Carmeliet, P. Endothelial cell metabolism in regular and diseased vasculature. Circ. Res. 116, 1231–1244 (2015).

  • Ngo, W. et al. Why nanoparticles choose liver macrophage cell uptake in vivo. Adv. Drug Deliv. Rev. 185, 114238 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tsoi, Ok. M. et al. Mechanism of arduous nanomaterial clearance by the liver. Nat. Mater. 15, 1212–1221 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liebner, S. et al. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 100, 323–331 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xiang, S. et al. Uptake mechanisms of non-viral gene supply. J. Management. Launch 158, 371–378 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dai, Q. et al. Quantifying the ligand-coated nanoparticle supply to most cancers cells in strong tumors. ACS Nano 12, 8423–8435 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lin, Z. P. et al. Macrophages actively transport nanoparticles in tumors after extravasation. ACS Nano 16, 6080–6092 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Matsumura, Y. & Maeda, H. A brand new idea for macromolecular therapeutics in most cancers chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Most cancers Res. 46, 6387–92 (1986).

    PubMed 
    CAS 

    Google Scholar
     

  • Bae, E. et al. Integrin α3β1 promotes vessel formation of glioblastoma-associated endothelial cells by calcium-mediated macropinocytosis and lysosomal exocytosis. Nat. Commun. 13, 4268 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hanahan, D. & Weinberg, R. A. Hallmarks of most cancers: the subsequent era. Cell 144, 646–674 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, Y., Wu, J. L. Y., Lazarovits, J. & Chan, W. C. W. An evaluation of the binding operate and structural group of the protein corona. J. Am. Chem. Soc. 142, 8827–8836 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, Z. P., Ngo, W., Mladjenovic, S. M., Wu, J. L. Y. & Chan, W. C. W. Nanoparticles bind to endothelial cells in injured blood vessels through a transient protein corona. Nano Lett. 23, 1003–1009 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ngo, W. et al. Figuring out cell receptors for the nanoparticle protein corona utilizing genome screens. Nat. Chem. Biol. 18, 1023–1031 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chauhan, V. P. et al. Normalization of tumour blood vessels improves the supply of nanomedicines in a size-dependent method. Nat. Nanotechnol. 7, 383–388 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Stay Connected

    0FansLike
    0FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles